section 3: DATA MODELING (2023)
- ANALYZING DATA
-
- comparing - proportions - with chi-square for contingency tables
- comparing - one-mean to a population - with one-sample t-test
- comparing - paired means - with paired-samples t-test
- comparing - two-means - with independent-samples t-test
- comparing - multiple-means - with one-factor analysis-of-variance
- comparing - means with multiple predictors - with factorial analysis of variance
- PREDICTING OUTCOMES
-
- predicting - outcomes - with linear regression
- predicting - outcomes - with lasso regression
- predicting - outcomes - with quantile regression
- predicting - outcomes - with logistic regresssion
- predicting - outcomes - with log-linear or Poisson regression
- assessing - predictions - with blocked-entry models
- MACHINE LEARNING FOR SOCIO-PSYCHOLOGICAL DATA
- About variables: exploring dimension reduction
- conducting - a principal component analysis
- conducting - an item analysis
- conducting - a confirmatory factor analysis
- About cases: clustering & classifying observations/cases
- grouping - cases - with hierarchical clustering
- grouping - cases - with k-means clustering
- classifying - cases - with k-nearest neighbors
- classifying - cases - with decision-tree analysis
- creating - ensemble models - with random forests
- DATA MODELING
- Analysing Data By Comparing & Inferences
- proportions: compare proportions
- PROPORTIONS - comparing proportions
- dataset: survival::lung
- packages: magrittr, pacman, survival, tidyverse
- functions: propr.test()
- t-tests: compare 2 things (distributions)
- ONE-SAMPLE T-TEST - compare 1 mean to population
- dataset: datasets::quakes
- packages: datasets, magrittr, pacman, tidyverse
- PAIRED MEANS T-TEST - compare paired means
- dataset: create artificial data with random numbers
- packages: GGally, magrittr, pacman, tidyverse
- INDEPENDENT-SAMPLES T-TEST - compare 2 means
- datasets: datasets::sleep, create artificial data with random numbers
- packages: datasets, magrittr, pacman, tidyverse
- ANOVA: compare multiple things (distributions)
- Predicting Outcomes using Regressions
- LINEAR REGRESSION
- dataset: import StateData.xlsx
- packages: GGally, margrittr, pacman, rio, tidyverse
- functions: ggpairs(), ggplot(), lm(), summary(), confint(), predict(), lm.influence(), influence.measures(), plot()
- LASSO REGRESSION
- dataset: import winequality-red.csv
- packages: lars, margrittr, pacman, rio, tidyverse
- functions: summary(), scale(), as.matrix(), lars(), plot(), view(), coef()
- QUANTILE REGRESSION
- dataset: import StateData.xlsx
- packages: GGally, margrittr, pacman, quantreg, rio, tidyverse
- functions: ggpairs(), ggplot(), rq(), summary()
- LOGISTIC REGRESSION
- dataset: import Big5 b5_df.rds
- packages: broom, margrittr, pacman, rio, skimr, tidyverse
- functions: ggplot(), skim(), glm(), summary(), tidy(), confint(), view(), predict(), head(), table(), prop.table()
- LOG-LINEAR (POISSON) REGRESSION
- dataset: datasets::InsectSprays
- packages: datasets, margrittr, pacman, rio, tidyverse
- functions: summary(), glm()
- BLOCKED-ENTRY MODELS
- dataset: import Big5 b5_df.rds
- packages: jmv, margrittr, pacman, rio, tidyverse
- application: JAMOVI
- Machine Learning
- Clustering Cases
- HIERARCHICAL CLUSTERING
- dataset: import StateData.xlsx
- packages: cluster, factoextra, margrittr, pacman, rio, tidyverse
- K-MEANS CLUSTERING
- dataset: datasets::mtcars
- packages: cluster, datasets, factoextra, margrittr, pacman, rio, tidyverse
- Classifying Cases
- dataset used: import Big 5 bf.rds
- K-NEAREST NEIGHBORS (K-NN)
- packages: caret, margrittr, pacman, rio, tidyverse
- DECISION-TREE ANALYSIS
- packages: caret, margrittr, pacman, rattle, rio, tidyverse
- RANDOM FOREST - ensemble model
- packages: caret, magrittr, parallel, randomForest, rio, tidyverse
- Variable-Component Reduction
- dataset used: import Big 5 b5.csv
- PRINCIPAL COMPONENT ANALYSIS (PCA)
- packages: GPArotation, magrittr, pacman, psych, rio, tidyverse
- functions: prcomp(), princomp(), principal(), summary(), plot(), vss(), nfactors(), fa(), fa.diagram(), iclust()
- ITEM ANALYSIS
- packages: GPArotation, magrittr, pacman ,rio, tidyverse
- functions: function(), as_tibble(), mutate_at(), mutate(), pull(), describe(), error.bars(), list(), scoreItems(), pairs.panesl(), psych::alpha(), hist(), irt.fa(), plot()
- CONFIRMATORY FACTOR ANALYSIS (CFA)
- using lavaan = "LAtent VAriable ANalyis" for CFA
- packages: lavaan, margrittr, pacamn, rio, tidyverse
- functions: names(), cfa(), summary()
|